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Abstract: - This paper describes a method for estimating of disturbances development and the laminar-turbulent 

transition location on a base of the linear stability theory in presence of the acoustic field. In a stable region 

amplitudes of perturbation velocities near the location of a stability loss are determined by disturbances which 

are excited by external sound waves. Because of proximity of a sound wave and eigen fluctuations parameters, 

the received value of amplitude is accepted equal to amplitude of the growing boundary layer wave. At some 

point down the Reynolds stress becomes equal to several percents of the laminar boundary layer stress. On the 

basis of experimental data the criterion is accepted according to which the Reynolds stress equal to 12% of the 

laminar stress in the beginning of the laminar-turbulent transition.  

On the basis of a spectrum of external disturbances and the accepted criterion the satisfactory consent of the 

calculated and experimental transition Reynolds numbers of is received. Up to transition the disturbance 

increase in a boundary layer is described by linear stability equations well enough. 

 

Key-Words: - Supersonic boundary layer, laminar-turbulent transition, Reynolds stresses, hydrodynamic 

stability, external perturbations, spectrum  

  

 

1 Introduction 
One of the most difficult problems in the 

theoretical aerodynamics is the prediction of the 

laminar-turbulent transition location. Existing 

examples of real flight and wind tunnels tests 

demonstrate the dramatic effect of the transition on 

the flow characteristics. One of the possible 

methods to determine the position of the transition 

can be based on experimental studies. These 

methods are limited areas of experimental 

researches, and need to be clarified on the basis of 

more fundamental approaches, in particular, the 

application of the linear stability theory. Although 

linear theory cannot fully describe the transition 

process (due to obvious non-linear processes) it may 

be useful in cases of small initial perturbation, such 

as in flight, because the length of the linear area in 

these cases considerably bigger than the plots of the 

nonlinear interaction. 

So far the e
N
-method is widely applied to 

definition laminar and turbulent transitions [1, 2]. 

The essence of a method consists in the assumption 

that the disturbance amplitude in unstable area 

increases in e
N
 of times at constant value N. The 

detailed review of works on application of e
N
-

method is available in [3]. 

It should be noticed that the more reasonable 

should recognize amplitude method [4]. The essence 

of this method consists that in the field of the 

beginning transition the disturbance amplitude 

reaches the size At. The complexity of its 

application consists in need of calculation of initial 

amplitude (near a stability loss point) of 

disturbances. It can only be solved within the 

framework of the receptivity theory, which turns out 

to be more complex than the stability theory of 

parallel flows. Therefore, in the first phase the 

amplitude method was not used and most 

researchers used e
N
-method. 

In the case of the parameters closeness of 

external disturbances and neutral eigen waves  it is 

possible to be guided by the theory of a 

quasiresonant excitation of oscillations in a 

boundary layer [5]. The gist of this theory is the 

distribution of disturbances in the boundary layer 

for both types of perturbations are close between 

themselves. Therefore near a neutral point the 

amplitude of neutral perturbations can be compared 

with the forced vibration amplitude caused by 

external waves. Without references to quasiresonant 

interaction this method was used in [4].  
 

2 Transition criterion  
Apparently the amplitude method was first proposed 

in [6]. There the assumption has been made that 

transition of a laminar boundary layer into a 
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turbulent layer happens in a location where the  

Reynolds stress generated by perturbations are  

equals the mean viscous stress. In practice the 

position of the transition start is determined by a 

visible deviation of the measured Reynolds stresses 

from laminar stresses. For example if the start of the 

transition is determined by   a minimum local 

friction on a wall or a dynamic pressure (Pitot's 

tube) it can be noticed that their minimum value 

exceeds the corresponding quantity at a laminar 

flow only by several percent. As an example the 

dependence of the measured friction on the heat-

insulated plate on longitudinal coordinate for Mach 

number M=1.99 taken from [7] are shown in Fig. 1. 
If to extend the line of the measured laminar 

friction at x = 13'' up to the position corresponding 

to a minimum, it will be received τw/q=0.5 10
-3

.  

Comparison with minimum value indicates that 

the last value approximately 12% higher than 

the value calculated for laminar law. In 

particular in [4] it has been shown that a 

satisfactory predictions of the position of the 

transition can be achieved on the assumption if 

to take that the value of Reynolds stresses equal 

to 14% of the laminar value.  

 
 

 
Fig.1. Local drag coefficient in conditions of 

laminar-turbulent transition, M = 1.97 

 
Based on the above as a transition criterion was 

adopted the condition: 

 

maxmax
0.12 / (Re ( ( / )) )tuv du dy     (1)     

Here , , , ,u u v  ─ dynamic viscosity, velocity 

and density, as well as perturbations of velocities, 

normalized on corresponding values on a boundary 

layer edge;  normal coordinate /yy  , where δ ─  

boundary layer thickness; Reδt ─ transition Reynolds 

number, built according to the thickness of the 

boundary layer. In the case of single-mode 

perturbations the right-hand side is determined by 

the eigen function of the stability theory and its 

amplification downstream. In formulating the 

problem of a hydrodynamic stability of quasi-

parallel flows [8─10] velocities u and v are 

represented in zeroth approximation as follows: 

0, Re {[ ( , ), ( , )] exp( )}u v A al f y x y x i      

For perturbations growing in the longitudinal 

direction can be taken 

0 0

* * * *
1 ( ) ;  ( )  +

x x

i r r

x x

x dx x dx z t          , 

where * * *
r ii    ─ eigen wave number, f and φ 

are the corresponding eigenfunctions of the  stability 

problem of a locally parallel flow for fixed values of 

β* and ω*; x0 is the coordinate of the neutral 

oscillations on the lower branch of the neutral curve. 
An asterisk indicates dimensional values. In the 

future it will be accepted that the maximum  value 

of an amplitude f inside the layer is equal to unity, 

│f│max=1. It can be shown that  
2 *

0 exp( 2 )Re ( ) / 2iuv A al f   , where A0 ─ 

maximum amplitude of eigen oscillationы of 

longitudinal speed inside the layer at  x= x0, an 

asterisk denotes complex conjugation.  

The amplitude of neutral oscillations A0 is 

generated as a result of non-stationary impact on the 

boundary layer, in particular, by external 

disturbances with amplitude A1. According to [4] it 

is assumed that A0= Az A1, , where Az ─ receptivity 

factor which dependces on the wave number β* and 

frequency ω*. With this in mind relation (1) can be 

rewritten in the form: 
2

2 2 *
1max max

max

0.12
Re ( ) ,

2 Re
z

t

I du
uv A A al f

dy





   

where 2 exp( 2 )iI   ; or in another form: 

 
1/2

max
1 1/2 * 1/2

max

2 /0.35

Re ((Re ( )) )

y

t z

u
A A A I

al f

 


     (2)  

 

Taking into account that *
max( )f  is the slowly 

varying function of the longitudinal coordinate, and 

the amplification coefficient depends exponentially 

on x, the perturbations amplitude near the transition 

for very small external perturbations will practically 

does not depend on the transition Reynolds number. 
Therefore, it is assumed that the amplitude of the 

longitudinal velocity perturbations near the 

transition is constant, as is customary in [4].  

Let us estimate the amplitude At for the boundary 

layer on the thermally insulated plate. In this case  
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1/2 1/2

1/2

max

2 2
0.8 w

w

du du

dy dy

 


 

   
     
  

 

at ( / )ex U    and ( ) / ) 0.332y wu   . 

According to [11]  = r f   , 1/3( Re )r t   . 
It follows from (2) that for  f=1 

1/3 1/3
1 0.28 / Ret z r tA A A I    . 

At a fixed frequency the wave number αr is 

associated with a Reynolds number by relationship: 
* 2( / )Re ) / Re /r e e r ru c F c     . Due to the 

fact that the phase velocity cr varies only slightly 

with the Reynolds number, it's possible to take

Rer B   or 0 0(Re / Re )r   . Because at low 

frequencies on the lower branch of the neutral curve

0 0Re D const    [12] it's possible to obtain 

2
0(Re / Re )r D   . So 

2/3

1/3 0Re
0.28

Re
t

t

A D


  
  

 
. 

 

Fig. 2. The amplitudes dependence of pressure  

(p), velocity (u), mass flow rate (m) and <uv>  

on the normal coordinate, /dY dy  . 

Re=1400, χ=arctg(β/α)=45°,  M=2. 

In [12] it was shown that for the boundary layer 

on a heat-insulated plate with M = 2 D≈10, therefore 

 
2/3

1 00.13 Re / Ret z tA A A I   . In addition, in 

wind tunnels 0Re / Re 0.3 0.5t   , therefore 

At≈0.06, that is 6% of the main velocity at the 

boundary layer edge . For subsonic flows in [4] the 

value of the longitudinal velocity pulsations near the 

transition position was assumed to be four percent 

(4%). As to the supersonic boundary layer, in [4] as 

a transition criterion was taken the pressure 

perturbation amplitude equal to 1%. But pressure 

perturbations inside the layer  are about in 4 times 

lower than the longitudinal velocity perturbations  

the  according to the theory of stability, Fig.2. 

Therefore it's possible to  consider that in [4] the 

value of the amplitude of velocity perturbations at 

the beginning of the transition was taken to be about 

4% as in the case of a subsonic boundary layer. 

In Fig.2 along with the longitudinal velocity and 

pressure amplitudes the distribution of the value 

<uv> (which is proportional to the Reynolds 

stresses) and the mass flow  are shown at M = 2, 

Reδ=1400, χ=arctg(β/α)=45°, F=0.1∙10
-4

. From the 

above results it can be seen that the positions of the 

amplitudes maxima of the disturbances and 

Reynolds stresses (which are proportional to <uv>) 

are in the same position approximately. Additional 

calculations showed that their location is practically 

independent of frequency at a fixed angle χ, which 

justifies the use of (2). 

 In the case of multi-frequency oscillations at 

fixed values of x, y, z the longitudinal velocity 

oscillations are written in the form: 
8

1

( ) Re ( exp( ))i i

i

u t al A i t


  . In this case 

2 2 * 2
1

1

Re ( ) / 2
n

zi i i i

i

uv A A al f I


 . If  the positions 

of the maximum amplitudes of the longitudinal 

velocity Aimax do not depend on ωi inside the 

boundary layer  then, omitting the  index max, instead 

of  (2) we will have: 

2 2 * 2
1

1 max

Re (Re ( ) 0.24
n

zi i t i i i

i

du
A A al f I

dy







  (3) 

At the same time at the beginning of the laminar-

turbulent transition the mean-square perturbations of 

the longitudinal velocity 2 1/2

1

( / 2)
n

ti

i

u A


  , where 

1ti i zi iA A A I . 

 

 

3 Disturbances in the supersonic 

boundary layer and its laminar-

turbulent transition in conditions of 

the wind tunnel T-325  
 

This section demonstrates the efficiency of the 

stability theory of supersonic boundary layers by 

comparing its data with experimental results 

obtained in a wind tunnel T-325 of Khristianovich 

Institute of Theoretical and Applied Mechanics SB 

RAS. 

 

3.1 Disturbances amplification in 

the transition region of the boundary 

layer 
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u

p

m

20<uv>
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As an example we consider experiments [13] which 

were carried out at the unit Reynolds number Re1 = 

12.51·10
6
/m and M = 2 in the boundary layer of a 

flat plate. Fig. 3 shows the mass flow spectrum 

approximation in the boundary layer. Dependence 

of root-mean-square perturbations of the mass 

flow in the boundary layer on the Reynolds 

number on the Reynolds number is shown in Fig. 4 

(round icons). The mass flow spectrum was 

approximated by the dependence: 
8

1

( ) sin( )i i i

i

m t m t 


  . The amplitude spectrum  

 

 

Fig.3 Amplitude spectrum of the mass flow in the 

boundary layer, Reδ = 700 

 
 

Fig.4. Dependence of root-mean-square 

perturbations of the mass flow in the 

boundary layer on the Reynolds number  

 

in [20] was obtained with an accuracy of 

the normalization factor therefore it  is 

designated as m/r  in Fig. 3.  

Table 1 shows the values of mi/r as a function of 

a frequency parameter (second column), were 

obtained from Fig. 3, as well as theirs squares (third 

column). Based on experimental values of the mass 

flow perturbation amplitude, Fig. 4, it was assumed 

that at Re = 700. <m> = 0.014, that is 1.4% of the 

main mass flow of the external flow. Using the 

relation 
8

2 2 2 3

1

( / ) / 2 (0.014) 0.196 10i

i

r m r 



    

 

can be obtained r
2
 =3∙10

-6
. The mi values for Re = 

840, 1000.1200, 1300 and 1400 were obtained by 

multiplying the experimental value of the 

perturbation at Re = 700 by the amplification 

coefficient at the interval of the Reynolds number, 

in accordance with the stability equations [14]. For 

frequency parameters F=(0.05, 0.1) ∙10
-4

 at which 

the critical Reynolds numbers are more than700, the 

coefficient of  an increase (decrease) of 

disturbances were determined by the ratio 

Azi(Re)/Azi(Rec) according to Fig. 5 when Re<Rec, 

and when Re>Rec by multiplying 

Azi(Rec)/Azi(Re=700) by I (see (2). corresponding 

experimental values were multiplied by  

Table 1. Calculations of root-mean-square pulsations 

 of  a mass flow in a dependence on the Reynolds number 

F∙10
4
 

experiment, Re=700 Calculation mi
2
 ∙10

6 
 based on experimental data  

mi/r mi
2
/r

2 
mi

2
∙10

6
 Re =840 1000 1200 1300 1400 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

10 

4.8 

2.5 

0.85 

0.32 

0.13 

0.07 

0.04 

100 

23.4 

 6.25 

 0.72 

 0.10 

 0.02 

 0.01 

 0.00 

300  

 70.2 

 18.8 

  2.2 

  0.3 

  0.06 

  0.03 

  0.01 

318 

67 

24.7 

 4.5 

 0.8 

 0.2 

 0.1 

 0.0 

318 

56.4 

51.1 

13.0 

 2.9 

 0.7 

 0.3 

 0 

288 

181.8 

199.5 

 67.0 

 12.0 

  1.6 

  0.3 

  0 

280 

230.4 

433.5 

138.4 

 18.7 

  2.0 

  0 

  0 

317 

418.1 

945.6 

251.7 

 24 

   1.7 

   0 

   0 

sum 131 392 413 441 747 1096 1950 

<m>% 1.4 1.37 1.31 1.75 2.3 3.1 
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(Re)
*

1
(Re 700)

exp( )
x

i
x

I dx


   . 

 

Fig.5. Dependence of uzi

 
on Reδ. Numbers 1,2, 

3,4, 5,6,7,8 represent to frequency parameters  

F=(0.05,0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 

0.40)∙10
-4

  

Calculations show that if F=0.05∙10
-4 

then 

Azi(Re)/Azi(Re=700)=1.03,1.03,0.98,0.96for Re=840, 

1000, 1200, 1260, and for F=0.10∙10
-4

   

Azi(Re)/Azi(Re=700)=0.96  at Re= Rec =840. 

Calculations results of mass flow perturbations, 

<m>%, are shown in Fig. 4 and in Table 3. The 

deviation of the experimental data from the 

calculation is observed in the interval of the 

Reynolds numbers 1300<Reδ<1400, where 

nonlinear processes are observed, [13]. 

 

3.2 Location of laminar-turbulent 

transition  

Because  
max

/ 0.33 wU    , 1.4
w

   and (3)  

is rewrited as 

2 2
1

1

0.11;    
n

tr i zi

i

K Ki Ki A A Di


   ,   (4) 

 where * 2

max
Re Re ( )t i i iDi al f I          

 The performance of the criterion (4) is verified 

by the example of experiments on the laminar-

turbulent transition of a supersonic boundary layer 

using the spectral composition of the perturbations 

in the wind tunnel   T-325 of ITAM of SB RAS 

[15].  Experiments were carried out at Mach number 

M = 2 and a unit Reynolds number Re1=25∙10
6
/m 

[16]. The T-325 was  upgraded periodically after 

which the composition of the perturbations in the 

wind tunnel changed. Therefore it is important to 

emphasize that spectrum  measurements [15] and 

experiments [16] were carried out at about the same 

time, and it can be assumed that the background of 

external disturbances was approximately the same in 

both cases. Studies [15, 17] found that the pressure 

perturbation level in the working part at M = 2 and 

Re1=25∙10
6
/m  was approximately 0.4%, the angle 

of inclination of the acoustic waves front relatively 

to the direction of the main flow  was approximately 

45° in the frequency range 4 40kH  what 

corresponds to the phase velocity c=ω/αr= 0.3. But 

the pressure amplitude and the amplitude of the 

longitudinal velocity outside the boundary layer are 

related by the equality 2 (1 )p M c u   . 

 

 
 

Fig.6. Amplitude mass flow spectrum in 

T-325, Re1=30∙10
6
/m. 

 

To calculate the spectral composition of 

longitudinal velocity perturbations on the basis of 

the mass flow spectrum, Fig. 6, we use the relation: 
2/ (1 )u m m p m M c u        , from which 

it follows that 
2u = m/( (1 ) 1) 0.56 mM c   .       (5) 

Table 2. Calculation results of  the velocity 

disyurbances in the T-325 on a spectrum (6) 

 mi/r u1i/r u1i
2
/r

2
 u1i

2
∙10

8
 

0.05 22.76 12.75 162.4 140.1 

0.10 10.62 5.95 35.4 30.55 

0.15 6.8 3.81 14.5 12.5 

0.20 4.95 2.77 7.68 6.6 

0.25 3.87 2.17 4.7 4.1 

0.30 3.17 1.78 3.15 2.7 

0.35 2.68 1.50 2.25 1.9 

0.40 2.31 1.29 1.67 1.4 

sum 232 200 

 

In the frequencies interval 10 200f kHz   the 

spectral curve, Fig. 6, is practically independent on 

a unit Reynolds number and is approximated by the 

relation 

m/m0=(f/f0)
-1.1

.                       (6) 

The calculations were carried out at f0 = 40kHz, 

400

500
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700

800

900
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1100
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1300

1400

Re4
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1
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3
4
5
6
7
8

uzi

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS S. A. Gaponov

E-ISSN: 2224-3429 79 Volume 14, 2019



which corresponds to the frequency parameter F0 = 

0.352∙ 10
-4

, and m0/r = 6∙10
-2

 at Re1 = 30∙10
6
/m and 

the velocity in the wind tunnel ue≈500m/s 

Unfortunately the normalization factor for the 

presented mass flow spectra was not given in [15], 

therefore the following technique was used. In the 

accordance with (6) the values of mi/r were 

calculated for frequency parameters F=(0.05, 0.10, 

0.15, 0.20, 0.25, 0.30, 0.35, 0.40)∙10
-4

 and 

corresponding values of ui were obtained on (5). 

Perturbations of the longitudinal velocity were 

represented as
8

1

( ) ( sin( ))i F i

i

u t u t 


   , where 

ΔF=0.05∙10
-4 

. The values of mi/r, u1i/r and their 

squares are given in 2, 3 and 4 columns of Table 2. 

From the relation 
8

2 2 2 2 6

1

( / ) / 2 10i

i

u r u r 



  and  

the data of Table 2 it follows that r2
=0.863∙10

-8.  
The squares of the amplitudes of the velocity 

perturbations are shown in the last column of the 

table. 

To determine the uzi the calculations of the  

interaction of  external oblique sound waves (χ=45°) 

with the boundary layer were performed in the low 

frequency approximation (the pressure disturbance 
in the boundary layer is constantly) in accordance 

with [14].

 

Table 3. Values of uzi, Rec, Ki and Di in the dependence on the frequency parameter 

F∙10
4
   Rec  uzi/r Re=1400 Re=1500 

  

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

 

1260    

840       

680       

580       

500        

460       

420       

400       

 

14.4 

 1.5 

 0.0 

  9.0 

  8.3 

  7.7 

  6.8 

  6.7 

Di 

12.5 

198 

2120 

6988 

7553 

4215 

1563 

454 

Ki 

0.0038 

0.0080 

0.0265 

0.0379 

0.0213 

0.0065 

0.0014 

0.0003 

I
2 

1 

7 

51 

142 

142 

75 

27 

8 

10
3
 uti

2
 

0.291 

 0.283 

 0.637 

 0.759 

 0.401 

 0.120 

 0.023 

0 

Di 

17.2 

446 

4922 

11760 

8917 

3741 

1049 

215 

Ki 

0.0050 

0.0180 

0.0602 

0.0638 

0.0250 

0.0058 

0.0001 

0.0002 

I
2 

1 

14 

106 

221 

157 

63 

17 

3 

10
3
∙uti

2
 

0.291 

0.566 

1.321 

2.38 

0.89 

0.101 

0.014 

0 

sum 0.106  2.514  0.178  5.56 

 

The relations of the maximum amplitude of 

perturbations of the longitudinal velocity in the 

boundary layer to the amplitude of the external 

sound wave are shown in Fig.5. Table 3 shows the 

values of the coefficients uzi at critical Reynolds 

numbers, Rec, as well as Di and Ki, in a dependence 

on the frequency parameter for the numbers Re = 

1400 and 1500. It is easy to see that condition (4) is 

practically satisfied when the Reynolds number is 

Rex = xRe1≈2∙10
6
. In this case the amplitude of 

perturbations of the velocity ut reaches 3% of ue at 

Re = 1400, and approximately 5% at Re = 1500. 

It should be noted that the sound field of three 

wind tunnel walls affects on the model boundary 

layer Therefore in calculations of the transition 

location should take the amplitude of external 

disturbances equal to 75% of measured 

experimentally in free stream and  a criterion value 

of Ktr  should be increased approximately by 1.8 

times and it is taken approximately equal to 0.2. In 

this case, the transition Reynolds number will 

slightly exceed the experimental value Rextr=2.2∙10
6 
 

of the paper [16]. 

 

4 Conclusion 
Thus, for the first time, on the basis of the 

spectrum of external acoustic disturbances, the 

position of the laminar-turbulent transition of a 

supersonic boundary layer is calculated, which is in 

agreement with the experimental ones. In the pre-

transition region the natural disturbances are 

described well by the linear theory.  

The research was carried out within the 

framework of the Program of Fundamental 

Scientific Research of the state academies of 

sciences in 2013-2020 (project АААА-А17-

117030610125-7, No 0323-2018-0009). 
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